DroidMiner: Automated Mining and Characterization of Fine-grained Malicious Behaviors in Android Applications
نویسندگان
چکیده
Most existing malicious Android app detection approaches rely on manually selected detection heuristics, features, and models. In this paper, we describe a new, complementary system, called DroidMiner, which uses static analysis to automatically mine malicious program logic from known Android malware, abstracts this logic into a sequence of threat modalities, and then seeks out these threat modality patterns in other unknown (or newly published) Android apps. We formalize a two-level behavioral graph representation used to capture Android app program logic, and design new techniques to identify and label elements of the graph that capture malicious behavioral patterns (or malicious modalities). After the automatic learning of these malicious behavioral models, DroidMiner can scan a new Android app to (i) determine whether it contains malicious modalities, (ii) diagnose the malware family to which it is most closely associated, (iii) and provide further evidence as to why the app is considered to be malicious by including a concise description of identified malicious behaviors. We evaluate DroidMiner using 2,466 malicious apps, identified from a corpus of over 67,000 third-party market Android apps, plus an additional set of over 10,000 official market Android apps. Using this set of real-world apps, we demonstrate that DroidMiner achieves a 95.3% detection rate, with only a 0.4% false positive rate. We further evaluate DroidMiner’s ability to classify malicious apps under their proper family labels, and measure its label accuracy at 92%.
منابع مشابه
Android Malware Detection using Markov Chain Model of Application Behaviors in Requesting System Services
Widespread growth in Android malwares stimulates security researchers to propose different methods for analyzing and detecting malicious behaviors in applications. Nevertheless, current solutions are ill-suited to extract the fine-grained behavior of Android applications accurately and efficiently. In this paper, we propose ServiceMonitor, a lightweight host-based detection system that dynamica...
متن کاملAnaDroid: Malware Analysis of Android with User-supplied Predicates
Today’s mobile platforms provide only coarse-grained permissions to users with regard to how thirdparty applications use sensitive private data. Unfortunately, it is easy to disguise malware within the boundaries of legitimately-granted permissions. For instance, granting access to “contacts” and “internet” may be necessary for a text-messaging application to function, even though the user does...
متن کاملDefDroid: Securing Android with Fine-Grained Security Policy
Android occupies the absolute dominant position in mobile operating system and has the largest market share. Meanwhile, Android faces the risk of malicious insiders leaking sensitive information. In this paper, we present DefDroid, a repackaging tool for enforcing security policies by modifying Android applications without root privilege. The main advantages of DefDroid are that it provides a u...
متن کاملString Analysis of Android Applications
The desire to understand mobile applications has resulted in researchers adapting classical static analysis techniques to the mobile domain. Examination of data and control flows in Android apps is now a common practice to classify them. Important to these analyses is a fine-grained examination and understanding of strings, since in Android they are heavily used in intents, URLs, reflection, an...
متن کاملIdentifying android malicious repackaged applications by thread-grained system call sequences
Android security has become highly desirable since adversaries can easily repackage malicious codes into various benign applications and spread these malicious repackaged applications (MRAs). Most MRA detection mechanisms on Android focus on detecting a specific family of MRAs or requiring the original benign application to compare with the malicious ones. This work proposes a new mechanism, SC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014